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Abstract. This paper describes an attempt of implementing physical parameters into  

a virtual swarm algorithm solution. It defines which physical parameters of the single 

object need to be known to properly transfer a virtual algorithm into a physical system. 

Considerations have been based on a stochastic movement swarm performing  

a coverage task. Time to finish the task and energy consumptions were measured for 

different numbers of drones in a swarm allowing to designate an optimal size of the 

swarm. Additional tests for changing variables allowed us to determine their impact  

on the swarm performance. The presented algorithm is a discrete-time solution, and 

every test is divided into steps. Positions of the drones are calculated only in time 

corresponding to these steps. Their position is unknown between these steps and the 

algorithm does not check if the paths of two drones cross between subsequent positions. 

The lower the time interval, the more precise results, but simulating the test requires 

more computing power. Further work should consider the smallest possible time 

intervals or additional feature to check if the paths of the drones do not cross. 
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1. INTRODUCTION 

 
Groups of drones can solve complex tasks even though they compose  

of simple objects cooperating without any central control, acting due to local 

interactions [1, 2]. The system composed of many simpler robotic objects tends 

to achieve better results than one highly advanced robot alone. This comes 

forward especially in the case of tasks that require spreading over a given area 

such as mapping or environmental monitoring [3]. 

Applications that require an entire research area to be covered or explored 

are called Coverage Tasks [4]. Swarm algorithms offer some advantages over  

a single object or human solutions. Swarms perform faster and more accurately. 

Also, they are tolerant to the failure of a single participant [5]. Furthermore, 

they are preferably used when the task area is dangerous or might not be 

accessed by humans [6]. 

A recent increase in interest in coverage tasks resulted in the rapid 

development of many different solutions. Generally, they might be divided into 

direct and stochastic methods. In direct methods, the movement of objects in the 

swarm is somehow defined when in stochastic methods they move randomly. 

In direct solutions, one approach is fore planning the path of the swarm. 

One such solution was presented by Englot [7]. Knowing the task area  

in advance, it might be divided into samples. Then, it is possible to search for 

optimal configuration of the robots in the task giving the best results. 

Another approach assumes that the task area is unknown and the search  

is carried out based on dynamic decisions made according to ongoing findings.  

As described by Soto [8] this might be achieved by programming more than one 

searching algorithm and by implementing a decisive algorithm that allows us to 

shift the strategy depending on a progressing situation. The other solutions 

might be based on decision coordination, where robots behave depending on 

their relative positions and integration of collected data [5, 9]. 

Direct methods achieve good results; however they require more advanced 

objects and a certain amount of computational complexity [6]. Solutions 

opposite to these ones are stochastic methods in which random movement of the 

drones is assumed and hence much simpler objects are sufficient. 

One type of stochastic solutions is statistical optimisation methods.  

As presented by Kumar [10], stochastic movement might be described  

by probability distribution using a variety of probabilistic and geometric tools. 

This allows designating of statistical properties of multi-robot swarms  

in stochastic coverage tasks. Another statistical solution was described by 

Ayvali [11] and it is called Cross-Entropy Method. It allows optimising the 

parameters of the trajectory of stochastically moving objects in coverage tasks. 
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The other method to evaluate stochastic solutions are simulations which 

allow designating the outcome by simulating the same scenario repeatedly and 

drawing the average results. Such an approach was presented by Yanmaz [12] 

to confirm the statistical solution or by Zhang [13] to simulate a swarm of micro 

aerial robots that were pollinating a crop field. 

Although all methods, described above, provide results in the behaviour  

of the swarms and optimisation of their performance, these papers consider only 

theoretical solutions and virtual swarms. None of them tries to raise the issue  

of real objects’ system and how would the proposed algorithm work when 

implemented in a real solution. Physical parameters of the swarm, such  

as dimensions, mass, inertia, or energy consumption are neglected. In our work, 

we present a simulation of a swarm composed of physical objects and we try  

to designate an impact of varying physical parameters on the results. 

This is the second stage of the project. In its first part [14] there was 

simulated a swarm of stochastically moving boids as virtual points. In this 

paper, the main assumptions are the same, but the algorithm was improved by 

adding physical parameters and motion dynamics involving mass, acceleration, 

kinetic energy, or energy required to keep flying objects aloft. 

 

2. RESEARCH OBJECTIVES AND ASSUMPTIONS 

 
This article describes a subsequent version of the authorial Swarm 

Algorithm. It simulates searching the task area with a swarm of randomly 

moving drones using the sweep coverage method [4].  

The main assumptions are the same. The algorithm simulates  

a two-dimensional, circular research area with a given radius. Then, a group of  

a given number of boids is set up over it. They move randomly over the area 

providing collision avoidance. The movement of the drones is not determined, 

and it is independent for every drone separately. They constantly change the 

direction in which they move and the only limit to their movement is that they 

may not leave the task area. The time and energy required to finish the task are 

counted and provided as a result of the test. 

The original version of the algorithm did not take into account any physical 

parameters and this solution was supplemented with the following changes: 

 certain physical form of the boid was assumed, which means in this 

solution it had a mass and some dimensions necessary for this 

consideration. Involving mass also means taking inertia into account; 

 this algorithm is intended for quadcopter drones and hence boids were 

assumed to be flying. This means that energy consumed by a single 

drone is divided into energy required for hover the drone in the air and 

kinetic energy required for its horizontal movement. 
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Although considering a physical form of the drones, momentums of inertia 

were neglected. All moving objects were assumed to have only two degrees  

of freedom, which were linear translations along two perpendicular axes on  

a test plain. Also, for the movement, each object was treated as a point of mass. 

The goal of this work was to simulate a stochastic, physical swarm 

performing a coverage task and to investigate a process of transferring a virtual 

solution to a real system. Furthermore, parameters that can indicate optimal 

configurations of the swarm were designated and the performed comparative 

tests allowed us to determine an impact of varying input parameters on the 

results. 

 

3. SWARM ALGORITHM DESCRIPTION 

 
The presented solution is a discrete-time algorithm, and every test is 

divided into successive iterations. Simulating physical behaviour required 

setting up a time scale so, it was assumed that every iteration in simulation 

corresponds to a one-second interval. 

Furthermore, to simulate the dynamics of movement of drones, the 

following physical parameters have been taken into consideration: 

 Acceleration (a) – drones do not accelerate to the maximal velocity 

instantly, but it requires some time. The rate of changing velocity over 

subsequent iterations is described by acceleration. 

 Maximal velocity (Vmax) – after reaching this value drones do not 

accelerate any further, but they move at constant velocity. 

 Mass (m) – every boid has its assigned mass. This implies the weight  

of the drone and the energy required to move the mass horizontally. 

 Rotor blade radius (RB) – describes dimensions of a single fan  

of a quadrotor. This value is necessary to evaluate the power required  

to fly at constant altitude. 

 Altitude (H) and implied by its density of air (ρ) taken from 

International Standard Atmosphere. 

 Standard gravity (g) – which is required to calculate the weight  

of a flying drone. 

At this stage of the research, there was no real-life object involved so, not 

all dimensions were known and those required were assumed. What follows for 

purposes of simulation, every drone was treated as a point of mass.  

In every iteration, each drone tried to accelerate in a random direction 

unless it was already moving with a maximal velocity. The safe distance (dsafe) 

was set up. If a drone would step closer to another object, then this distance  

it stopped. The implemented algorithm was modelled on the one presented in an 

article [14] written by the authors of this paper. 
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In the case of stopping a drone, a simplification has been made, that the 

time for stopping completely is always one iteration regardless of the velocity 

that the drone was moving with when it started to deaccelerate. 

The movement of boids depends on their current velocity and on the given 

acceleration. Assuming that the step is safe, and a drone is not stopping due  

to safe distance violation in iteration “i” it moves a distance equal to: 

 
 

(1) 

unless it is moving with Vmax. Then, the distance equals: 

  (2) 

where Δt is 1-second iteration time. 

The energy consumption of a single drone is calculated by dividing  

it between the energy required to hover at a given height and to kinetic energy 

required to accelerate, move, or deaccelerate. 

As proven by Lopez [15] and Rotaru [16], the energy required to hover  

a helicopter or quadrotor is dependent on air density (ρ), the area swept  

by rotors (A), and weight (M) of the machine itself. Maintaining a constant 

height can be achieved by delivering the constant power P to the rotors which 

equals: 

 

 
(3) 

where A for quadrotor is the area swept by all four fans: 

  
(4) 

Air density was drawn from International Standard Atmosphere  

as it is dependent on Height of flight using linear interpolation on values  

from a table [17]. 

In equation (3), the power was given in Watts. Energy consumed in the test 

for hovering a single drone equals the power (P) multiplied by the time of the 

test (TI). The total energy HE used in an attempt to maintain the flight of the 

swarm was the energy required to hover a single drone multiplied by the 

number of drones (D): 

  (5) 

As shown by Reid [18], the power required for horizontal movement of the 

quadcopter is complicated to estimate as it depends on many different variables. 

Because at this stage no physical dimensions of the drone were known, another 

simplification was made.  
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The energy required to move the drone horizontally was calculated by 

standard kinetic energy equations. During accelerating in every iteration “i” 

drone required the energy equal to: 

 
(6) 

during movement with Vmax, this energy equals: 

 
(7) 

Stopping the quadcopter is also a complex process as it requires the 

machine to counteract the velocity. According to the assumption that 

momentums of inertia were neglected, this process was simplified, and it was 

assumed that energy spent to stop the movement depends on the velocity that 

the drone was moving with, before starting the deacceleration. It equals: 

 
(8) 

In every case of horizontal movement, any resistance of motion was 

neglected. Movement energy was also calculated in Joules per second. The total 

kinetic energy KE was calculated by summing up the partial components ΔKE 

consumed through the whole test by all the drones together. 

The goal of every test was to cover 90% of a research area of the given 

radius Rarea. In every iteration, every drone scanned the area of the certain radius 

Rscan around it. Due to the assumption that drones are flying, this value was 

dependent on a height with a linear proportion as shown in Fig. 3.1.  

 

 
 

Fig.3.1. Dependance of the radius of scaned area (Rscan) of the height  

of flight (H) 
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4. TESTS 

 
To evaluate an impact of different changing variables, a series of tests were 

carried out. Due to the stochastic movement of drones, for every result at least 

10 tests were taken and then, an average outcome was drawn. The following 

values were constant during all of the tests: 

 
Table 4.1. Parameters with constant values 

Parameter Symbol Value Unit 

Standard gravity g 9.81 ms-2 

Mass of the drone m 1 kg 

Safe distance  dsafe 10 m 

Maximal velocity Vmax 10 ms-1 

Rotor blade radius RB 0.2 m 

 

For every set of parameters, series of tests were carried out for groups  

of D = [1, 2, 3, 4, 5, 7, 10, 15, 25, 50, 100, and 150] drones. For every swarm 

size (D), the following values were counted and provided as results: 

 the number of iterations (TI) required to finish the task. This allowed 

determining the duration of the attempt in seconds; 

 the number of emergency stops (SE) during the attempt. This value 

shows how many steps were wasted due to the too close fly situation;  

 the swarm effectiveness (φE) allows showing what part of steps was 

used to move the drones and what part was consumed by stopping. It 

was calculated with the following formula: 

 
(9) 

 the total energy (TE) required to perform the task. It is the sum of 

energy (HE) required to hover the drones and the kinetic energy (KE) 

consumed to move the drones horizontally; 

 the performance indicator (µTE) is a product of multiplying the total 

time (TI) and the total energy (TE). This allowed designating which 

drone count provides the best compromise between the shortest time to 

finish the task and the least energy spent to do so. Therefore, optimal 

solutions could be found. 

The main attempt was performed fifty times for each group to obtain stable 

reference results which could be compared to the results of other tests. It was 

carried out with the following set up of variables shown in Table 4.2. Then, 

further tests were carried to designate an impact of changing those variables  

on the result. While one of the variables was tested, all the others were constant. 
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The only exception is the height of flight and the scanned area radius as 

they are depended on each other.  

 
Table 4.2. Variables for the reference attempt 

Parameter Symbol Value Unit 

Acceleration a 2.5 m·s-2 

Height of flight H 30 m 

Air Density ρ 1.198 kg·m-3 

Power required to hover P 27.9 W 

Scanned Area radius Rscan 5 m 

Research Area radius Rarea 150 m 

 

5. RESULTS ANALYSIS 

 
The results of the first test were shown in Table 5.1 and Figures 5.1-5.3. 

Later, in the article, these results will serve as a point of reference allowing to 

designate an impact of changing variables on the results. 

 
Table 5.1. Reference results 

Number of drones [-] 1 2 3 4 5 7 10 15 25 50 100 150

Time [s] 2191 1138 779 605 504 367 279 209 143 96 70 61

Collision avoidance stops ES 

[-]
0 42 95 123 175 218 329 535 821 1613 3111 4724

Total energy TE [kJ] 170.7 172.3 172.3 174.1 176.3 174.5 177.8 182.4 182.5 199.6 235.8 282.4

Percentage of total energy 

used to hover [%]
36% 37% 38% 39% 40% 41% 44% 48% 55% 68% 83% 90%

Swarm effectiveness          

φE [%]
100% 98% 96% 95% 93% 92% 88% 83% 77% 66% 55% 48%

Performance indicator µTE 

[MJ·s]
374.1 196.1 134.2 105.3 88.9 64.1 49.7 38.1 26.1 19.2 16.5 17.1

 
 

As shown in Fig. 5.1, the time required to finish the task decreases 

exponentially with an increase in the number of drones in the swarm. On the 

other hand, the more drones in the area, the more collision avoidance stops, and 

they are rising linearly.  

Figure 5.2 shows that total energy consumption rises linearly along with  

a rise of a number of drones in the swarm. Furthermore, the more drones in the 

group, the greater fraction of energy is consumed to keep the drones hovering. 

For a group of 25 objects, it is more than 50% and for the largest group, almost 

100% of the total consumed energy was used for hovering. This parameter is 

combined with collision avoidance stops. When the drone does not move due to 

safe distance violation, it still consumes the energy required to hover. 
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Fig 5.1. Time and number of collsion avoidance stops in reference tests 

 

 
 

Fig. 5.2. Total energy and percentage of total energy consmed to hover  

in reference tests 

 

As shown in Fig. 5.3 and Table 5.1, a performance indicator has its 

minimum for a group of 100 drones. This means that below that number even 

though the total energy consumption was lesser, the time required to perform 

the task was of greater value. For more numerous groups, the rise in the total 

energy was unequally greater than a decrease in the time. This means that the 

optimal solution for a given set of parameters is a group of 100 drones. 

Swarm effectiveness shows that the more numerous groups, the less 

efficient it is. As long as a group of 100 drones provides the best balance 

between time and energy, it can be seen that almost 50% of energy was wasted. 

Therefore, for a greater effectiveness and still considerably short time of test, 

the groups of 7 or 10 drones provide better results, as their effectiveness is 

about 90% while the total time is significantly lesser than for less numerous 

groups. 
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Fig. 5.3. Swarm effectiveness and performance indicator in reference tests 
 

5.1. Tests for different values of research area radius  
 

First comparative tests were carried out for varying research area radius. 

The tests were performed for Rarea=[100, 150, 200] m. Figure 5.4 shows that the 

bigger the area, the more time is required to finish the task. What follows, more 

energy is required but the number of collision avoidance stops is nearly the 

same in all instances. More space allows the drones to move more freely and 

hence, swarm effectiveness rises. More energy is consumed for horizontal 

movement and due to the longer trials, energy consumed for hovering the 

drones also increases. Though, the increase in kinetic energy is greater as 

percentage of energy consumed to hover decreases. As it can be observed in 

Table 5.2, minimum of the performance indicator µTE moves towards the larger 

groups along with rising research area radius. This minimum means that for 

larger groups even though the time is lesser, the total consumed energy is 

incomparably higher than for smaller groups and the swarm is energy 

inefficient. The minimums were highlighted in Table 5.2. 

 
Table 5.2. Performance indicator for varing Rarea.  
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Fig. 5.4. Results of comparative tests for varying research area radius 
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5.2. Tests for different values of acceleration 

 

Secondly, an impact of varying acceleration was verified. For Rarea = 150 

m, and other parameters set to the same constant value, a series of tests were 

carried out for a = [2; 2.5; 3.33] ms-2. The results are presented in Figs. 5.5 and 

5.6. 

As it can be seen, varying acceleration has no major impact on the results. 

Mostly, all the results are the same and if they differ, the difference is within the 

limits of a statistical error.  

The only trend might be observed on the swarm effectiveness plot. For 

high numerous swarms, the bigger the acceleration, the lower the effectiveness 

of the swarm. In more numerous groups, the higher acceleration means the 

greater chance to step within a collision avoidance zone of the other drone, 

therefore the effectiveness decreases. 

 

Fig. 5.5. Results of comparative tests for varying acceleration 
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Fig. 5.6. Results of comparative tests for varying acceleration 

 

 

5.3. Tests for different values of altitude 

 

As it can be seen in all presented so far results, a great fraction of total 

energy is consumed by the energy required to hover the drone at a given 

altitude. This energy is altitude dependent so, it has been theorized that reducing 

the height of flight might reduce the total energy gradually. As mentioned 

earlier, the lower altitude means the higher air density, but it also comes with 

the smaller radius of the area scanned by the drone. The comparative tests were 

carried out for H = 20 m. Table 5.3. below compares the parameters of the tests: 

 
Table 5.3. Parameters for varying height of flight 

Tests H [m] ρ [kgm-3] P [W] Rscan [m] 

Comparative 20 1.207 27.89 3.33 

Main 30 1.198 27.99 5.00 

 

As shown in Table 5.3, the decrease of Rscan is significant when an increase 

in ρ with a reducing altitude is almost negligible. Therefore, P is the same for 

both altitudes. The results of the tests were shown in Fig. 5.7. 

As it can be seen, total time and total energy increased significantly when 

the percentage of energy used to hover and the percentage of swarm 

effectiveness are almost the same. The decrease in power required to hover is 

too small compared to much smaller area scanned by a drone. The lower Rscan 

causes the greater time required to finish the task when the energy consumed 

every second is nearly the same.  
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Figure 5.7. Results of comparative tests for varying altitude 

 

6. CONCLUSIONS 

 
An approach to a stochastic movement swarm with physical parameters 

was presented. The algorithm allows designating an optimal number of objects 

in the swarm according to varying physical parameters. 

The presented work shows how complicated it is to transform an algorithm 

prepared on virtual simulations to work for a real, physical system. Many 

variables must be taken into consideration and a great part of them is very 

problematic to designate. Therefore, the results provided by a real swarm might 

have a great differentiation from those obtained in virtual simulations.  

Although the presented algorithm provides certain results, it is still highly 

undeveloped as many crucial parameters were neglected. This can be seen  

by many simplifications assumed in this work.  
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Object dimensions might only be implemented to the algorithm after 

examining the resulting resistance of motions in an aerodynamic tunnel. 

Furthermore, the mechanics of motion for quadcopter is a complex process, 

especially while decelerating or rotating and hence, separate studies should be 

carried out on this subject. 

Results of tests for a single set up of parameters show, that the rising 

number of drones in a group comes with positive and negative effects. The more 

numerous groups, the time to finish the task lowers exponentially. But the 

consequence of the larger group is that the safe distance is violated more 

frequently which means the bigger part of the drones does not move 

horizontally while they still have to hover. This means that for bigger groups 

the fraction of energy required to hover is rising and swarm effectiveness is 

lowering. That is why the performance indicator (µTE) was calculated, which is 

a product of multiplying the total time (TI) and the total energy (TE) that allows 

designating of optimal solutions between the shortest possible time and the least 

consumed energy. The results show that for every group’s count, there can be 

found a minimum of that parameter which indicates an optimal solution for 

given conditions of the test. 

Comparative tests showed that the acceleration of a single object has  

a minor impact on the performance of the whole swarm. In the case of height,  

it was proven, that as long as the area scanned by a single drone is bigger with  

a rising altitude, the swarm should fly the highest possible as the power required 

to hover the drones rising insignificantly with a rising height of flight. Though 

individual research should be conducted for scanners to find a real dependence 

of height and their performance. 

It was possible to develop those results because of the assumed 

simplifications. The future work should adopt a physical model of the drone and 

carry out additional tests on it. Parameters such as drag, and mechanics of 

motions should be acquired. Only then the work on this algorithm might be 

taken to the next stage, where tests might be carried out with less or no 

simplifications at all. Furthermore, having a physical model would allow 

performing hybridized tests in which real objects might be combined with the 

virtual swarm. 

Additionally, in further tests, different shapes of research areas should be 

taken into consideration. For this algorithm, a circular area is simple as it does 

not have any corners. Areas of polygonal shapes might prove inconvenient for 

stochastically moving drones.  

The presented algorithm is a discrete-time solution and every test  

is divided into steps. Positions of the drones are calculated only in time 

corresponding to these steps. Their position is unknown between these steps and 

the algorithm does not check if the paths of two drones cross between 

subsequent positions. The lower the time interval, the more precise results but 

simulating the test requires more computing power.  
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Further work should consider the smallest possible time intervals or 

additional feature to check if the paths of the drones do not cross. 
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Streszczenie. W artykule opisano próbę implementacji parametrów fizycznych do 

rozwiązania algorytmu wirtualnego roju. Określono, które parametry fizyczne 

pojedynczego obiektu muszą być znane, aby poprawnie przenieść wirtualny algorytm 

do systemu fizycznego. Rozważania oparto na stochastycznym roju ruchu 

wykonującym zadanie przeszukiwania. Zmierzono czas wykonania zadania i zużycie 

energii dla różnej liczby dronów w roju, co pozwoliło na wyznaczenie optymalnej 

wielkości roju. Dodatkowe testy zmieniających się zmiennych pozwoliły określić ich 

wpływ na wydajność roju. Przedstawiony algorytm jest rozwiązaniem dyskretnym  

i z każdym testem jest podzielony na kroki. Pozycje dronów są obliczane tylko w czasie 

odpowiadającym tym krokom. Ich pozycja między tymi krokami jest nieznana,  

a algorytm nie sprawdza, czy ścieżki dwóch dronów przecinają się między kolejnymi 

pozycjami. Im krótszy odstęp czasu, tym dokładniejsze wyniki, ale symulacja testu 

wymaga większej mocy obliczeniowej. Dalsze prace powinny uwzględniać możliwie 

najmniejsze odstępy czasu lub dodatkową funkcję do sprawdzenia jeśli ścieżki dronów 

się nie przecinają. 

Słowa kluczowe: algorytm roju, zasięg przemiatania, zadanie pokrycia, optymalizacja, 

ruch stochastyczny 
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