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Abstract. Resilience of Critical Infrastructure (CI) facilities defined as a capacity  

for further operation even upon changes that may result from natural or human-made 

disasters is extremely important from the perspective of functioning of society. Resilience 

of critical infrastructure facilities may be developed by taking such activities  

as introducing changes to their structure based on results of simulations of functioning  

of CI facilities. Another solution is to make use of computer simulations for better 

preparation of persons responsible for the functioning of CI facilities. This article 

describes a reference CI facility with potential scenarios of development of emergency 

situations and with a set of optional courses of an emergency situation. The scenarios 

were used to prepare a training application based on virtual reality techniques with an 

interface allowing a wide spectrum of interactions with a virtual environment, including 

commands issued to other employees, to be executed. 
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1. INTRODUCTION 

 
Human-made and natural disasters, such as the terrorist attacks in 2001 and 

hurricane Katrina in 2005, highlighted the sensitivity of Critical Infrastructure 

(CI) systems and raised awareness of the need to protect them. To improve the 

protection of CI in the USA, the National Infrastructure Simulation and Analysis 

Centre (NISAC) and the Department of Homeland Security were established in 

2001 and 2002. Similar organisations and programmes were also developed in 

other regions and countries. They included the European program of critical 

infrastructure protection, the plan of implementation of critical infrastructure 

protection in Germany, and the programme of critical infrastructure resilience in 

Great Britain [1]. In Asia, as a result of the earthquake and tsunami in Fukushima 

[direct cause of failure in the Japanese nuclear power plant was an extremely  

(14 m) high tsunami wave that broke the retaining wall and flooded the diesel 

generators which were installed too low; water also damaged fuel tanks for the 

generator sets, and one of these tanks was moved by the wave by 150 m; reactor 

cooling issues were noted], the Japanese national resilience programme in 2013 

assigned USD 210 billion for projects to enhance overall security of energy, 

water, transport and other CI facilities [2]. Knowing that the majority of failures 

originate from the distribution system, the Chinese energy administration 

provided CNY 20 billion for a major repair of the grid in the period 2015–2020 

to increase its reliability, quality of energy, and resilience to disturbances. 

Methods of modelling and simulation of functioning of CI aimed at increasing 

the latter’s resilience drew a lot of attention in the scientific environment, among 

private companies, and among governmental bodies. In Poland, the National 

Critical Infrastructure Protection Programme was developed [3]. 

The term “resilience” was introduced for the first time in 1973 by Holling  

in the field of ecology and evolution [4]. This concept was first used to describe 

the capacity of an ecosystem for further functioning after changes. Nowadays 

resilience is widely used in numerous fields, including in relation to national 

disasters and risk management [5], civil infrastructure testing [6–8], systems 

engineering [9], power systems [10–11], etc. 

Although there is no consensus as to the definition of resilience [12], its core 

is generally the same, i.e. it is a master concept covering a system’s performance 

before and after catastrophic events. The study [13] presents an overview of 

different approaches to defining and assessing resilience, and provides three 

features of resilience: adaptation capacity, absorption capacity, and recovery 

capacity. Thus resilience can be defined as “a unit’s capacity to foresee, 

counteract, absorb, react to, adapt to, and overcome disturbances” [14]. 

The study [15] presents an overview of eight modelling and simulation 

techniques for interdependent CI, namely: agent modelling, system dynamics, 

hybrid system modelling, input-output mode, holographic hierarchical 

modelling, critical path method, high level architecture, and Petri nets.  
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Additionally, seven criteria for model assessment were proposed. They 

include: modelling orientation, methodical design strategies, types of 

interdependencies, types of events for simulation, consequences of events, and 

data and monitoring needs. Ouyang [16] has recently made an overview of the 

existing approaches to modelling and simulation of CIs and has divided them into 

six types: empirical approaches, agent approaches, dynamic approaches, 

economic approaches, network approaches, and other. The existing research has 

been classified and reviewed in terms of basic principles.  

Energy infrastructures include electricity grids, gas networks and fuel 

networks. Among all critical infrastructure sectors, energy infrastructure can be 

considered the essential as it secures the functioning of facilities in all of the 

remaining critical infrastructure sectors. For instance, water supply and sewer 

networks are based on power systems which ensure operation of the networks’ 

pumps. IT and communication systems are based on power systems in terms of 

execution of data transmission tasks. Transport systems are based on fuel 

networks to obtain power for all types of vehicles. The dependence of other 

critical infrastructures on the power grid may cause the latter to be susceptible to 

disturbances. Disturbances in a power system may be transferred to other 

dependent infrastructure systems, and even back to the sources of failure [17–18]. 

This sequential and accumulating feature of failure increases the susceptibility of 

a power grid. Energy infrastructure is also sensitive to climate change. Rising sea 

level and an increasing frequency of big storms lead to serious floods in coastal 

areas where numerous pieces of energy infrastructure [19], such as power plants, 

natural gas plants, and petroleum and gas refineries are located. Moreover, low 

probability events, such as hurricanes and terrorist attacks, exert great influence 

on the further functioning of energy infrastructure. 

On the basis of the aforementioned significance and susceptibility to 

hazards, resilience of energy infrastructure has become an urgent and important 

subject of research. This issue is dealt with using various methods. In many 

publications, resilience of energy infrastructure is simulated as an optimum 

operating issue [20–25]. Some researchers use the agent based modelling method 

to reveal complicated interactions between power system components [26–29]. 

Others improve traditional topological indicators of power grids by embodying 

their physical behaviour [30]. Furthermore, in response to the appearance of “big 

data” resources, in some research large-scale data analysis in energy resilience is 

used, in particular with regard to power grid testing [31–32]. 

 

2. CRITICAL INFRASTRUCTURE REFERENCE FACILITY 
 

For the purposes of development of the subject-matter study, including  

a scenario of development of critical infrastructure facility emergency situations, 

Dolna Odra Power Plant (DOPP, Poland) was selected as the reference facility.  
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It belongs to Dolna Odra Power Plants Complex (together with Pomorzany 

Power Plant and Szczecin Power Plant, Poland), is owned by PGE Mining and 

Conventional Power Generation - Polish Joint Stock Company, and is located in 

Nowe Czarnowo near Gryfino, Poland (Western Pomerania province). Virtual 

environment of DOPP is illustrated in Fig. 1. 

DOPP was erected in 1974–1977 and upgraded in the 90s. This system- and 

unit-based, conventional power plant with an open cooling system is currently 

provided with 8 units. Units 1–2 and units 5–8 ensure installed power at a level 

of 1,362.00 MWe and thermal power at a level of 100.81 MWt, whereas units 

 3–4 are taken out of operation. Hard coal is used as the fuel in the process of 

electricity generation. Biomass is also co-fired at the plant on an industrial scale. 

 

3. SCENARIO OF DEVELOPMENT OF EMERGENCY 

SITUATION OF CRITICAL INFRASTRUCTURE FACILITY 
 

The scenario of development of an emergency situation of a critical 

infrastructure facility based on the example of DOPP covers the following 

sequence of events initiating conditions that may affect occupational health and 

safety, as well as continuity of operation of the reference facility being analysed: 

1) Representatives of an unidentified group of hackers enter the DOPP 

premises and provide themselves with physical access to an internal, 

isolated data communication system of the power plant. This physical 

access is a point-type (intermediate) connection to the above system with 

remote access function. 

2) Representatives of an unidentified group of hackers carry out remote 

hacking into the internal isolated data communication system of the power 

plant via the intermediate connection (physically located outside of the 

DOPP premises). By interacting with functional modules of the 

distribution centre, they falsify the results of measurements of the boiler 

tank filling level displayed at the distribution centre. They also provide 

images from cameras set on unit 7 and its immediate vicinity. 

3) Personnel of the distribution centre is convinced that the amount of coal in 

the boiler tank is lower than in reality. As a consequence, the personnel 

activates the boiler filling function and keeps it active even when the tank 

has in reality been filled. 

4) Coal overflows the boiler tank, and coal lumps fall into the surrounding 

elements of infrastructure and systems, machinery, and equipment. The 

lumps damage, for instance, the coal conveyor and mill control system 

supply cables. As a result of the supply cable damage, sparking occurs and 

smouldering of the lumps that came out of the overfilled tank is initiated. 

Coal lumps coming out of the tank trigger the release of a dust and air 

mixture into spaces located at the overfilled boiler tank and at the boiler. 
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5) The emergency situation is not identified by DOPP personnel as all 

cameras oriented towards the relevant locations show the images replaced 

by the representatives of the unidentified group of hackers. The field 

engineer is involved in monitoring of the adjacent units and does not walk 

through the zone under analysis. 

Despite the fact that the list of critical infrastructure components is 

confidential, it was assumed that DOPP may be a component of the system 

supplying energy, raw materials for power industry and fuels, thus requiring 

special protection against any factors that may affect the continuity of its 

operation. Drawing upon good industry practices, particular attention should be 

paid to physical protection, technical protection, personal protection, data 

transmission protection, legal protection and recovery plans. 

 

4. LIST OF SCENARIO OPTIONS 
 

On the basis of an analysis of the network of safety factors, and in connection 

with the training-related intended purpose of the scenario, the following options 

for its development have been formed: 

Option 1). Sparking from the belt conveyor and mill control system supply 

cables causes ignition of the dust and air mixture, explosion (deflagration), mill 

damage, immediate secondary explosion (deflagration) of the mixture inside the 

mill, and fire caused by the distribution of the flammable material around the 

explosion zone. Two adjacent units (6 and 8) are damaged and trip. 3 field 

engineers are injured. They are unable to leave the hazard zone on their own. 2 

employees working in the remaining units go to rescue them. 

Option 2). Sparking from the belt conveyor and mill control system supply 

cables causes ignition of a layer of coal dust that was accumulated on adjacent 

components and fire of this layer. The smoke being released hinders identification 

of the location of the fire. The fire alarm system installed in common circulation 

routes detected the fire hazard and caused unit 7 to trip. 3 employees run from the 

adjacent units and carry out initial identification of the hazard. 

Option 3). Fire hazard is identified by a relevant field engineer. Sparking 

from the belt conveyor and mill control system supply cables causes electric 

shock to the engineer, who loses consciousness. Loss of wireless communication 

with this employee is regarded by the distribution centre employee as an 

emergency medical condition. He/she selects another field engineer to verify the 

condition of the first employee. 

Option 4). Fire hazard is identified by a relevant field engineer. Coal lumps 

coming out of the boiler tank hit his/her head, causing loss of consciousness. Loss 

of wireless communication with this employee is regarded by the distribution 

centre employee as an emergency medical condition. He/she selects another field 

engineer to verify the condition of the first employee. 
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Option 5). Coal lump layer fire initiates ignition of a layer of coal dust that 

has accumulated on adjacent components. The smoke being released hinders 

identification of the location of the fire. The field engineer who notices the 

accumulation of smoke loses orientation and consciousness. The smell of smoke 

is perceived by 1 employee servicing cleaning equipment. He/she notices the 

injured person and goes to help him/her. 

 

Fig. 1. Virtual environment presenting an emergency situation  

(explosion and fire) in a critical infrastructure facility such as a power plant. 

 

 

Fig. 2. Illustration of interface to issue commands to the second employee  

and to inform about events (left) and send a message to a corresponding recipient  

– select the recipient from the list (right). 

4. CONCLUSIONS 

 

It is assumed that the utilisation of realistic simulations based on virtual 

reality techniques will increase the effectiveness and efficiency of this type of 

training, which is currently conducted using traditional forms of training and 

simple, schematic computer games or RPGs (Role Playing Games) without 

computers.  
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Virtual reality can be used to illustrate complex, multi-optional training 

scenarios that show the development of emergency situations even in such 

complicated and complex critical infrastructure components, such as power 

plants and combined heat and power plants.  

HMD (Head Mounted Display) goggles used on the head and controllers 

held in the hands allow for free observation of the virtual environment on the 

basis of a stereoscopic image, and for a wide spectrum of interactions with the 

virtual environment. The user, seeing avatars of his/her hands, can lift and handle 

various items, activate machines and perform repairs. An almost complete set  

of manual actions is available. Utilisation of an additional interface extends  

the scope of available actions by such activities as direct communication with 

personal avatars (including e.g. issuing commands to the combined heat  

and power plant employees – see Fig. 2) or sending messages using selected 

means of communication (computer, telephone, radio-telephone, etc.). 
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Streszczenie. Odporność obiektów Infrastruktury Krytycznej (IK) definiowana jako 

zdolność do dalszego działania nawet po wystąpieniu zmian, których źródłem mogą być 

katastrofy naturalne lub te spowodowane przez człowieka, jest niezwykle istotna z punktu 

widzenia funkcjonowania społeczeństwa. Zwiększanie odporności obiektów 

infrastruktury krytycznej może być realizowane dzięki działaniom takim jak 

wprowadzanie zmian do ich budowy na podstawie wyników symulacji funkcjonowania 

obiektów IK. Innym rozwiązaniem jest wykorzystanie symulacji komputerowych do 

lepszego przygotowania osób odpowiedzialnych za funkcjonowanie obiektów IK.  

W artykule opisano referencyjny obiekt IK wraz z potencjalnymi scenariuszami rozwoju 

sytuacji kryzysowych wraz zestawem wariantów przebiegu sytuacji kryzysowej. 

Scenariusze te zostały wykorzystane do przygotowania aplikacji szkoleniowej bazującej 

na technikach rzeczywistości wirtualnej z interfejsem umożliwiającym realizację 

szerokiego spektrum typów interakcji z środowiskiem wirtualnym, w tym wydawanie 

poleceń innym pracownikom.   

Słowa kluczowe: infrastruktura krytyczna, niezawodność, rzeczywistość wirtualna, 

projektowanie aplikacji szkoleniowych 
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