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Abstract. This article presents an authorial swarm algorithm that performs coverage tasks 

using the Sweep Coverage method. The presented solution assumes stochastic movement 

of the objects in the swarm which allows them to be simple ones. Our goal was to find an 

optimal number of objects in the swarm. The main evaluated factors are time and energy 

consumption. Changing input data allowed us to designate different cases and to examine 

the influence of varying parameters of a single boid on a whole swarm behaviour. 
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1. INTRODUCTION  

 
Swarm Systems are more commonly used in practical applications, in which 

high complexity requires optimal solutions. Therefore scientists are searching for 

new Swarm Algorithms which would allow performing the task more and more 

efficiently. Such solutions are inspired by nature where herds of animals can 

move in order, although they consist of dozens of individual organisms. Insects, 

such as ants or bees, are the second group of biological exemplars. Their swarm 

organization and control are phenomenal compared to the simplicity of a single 

component. The resultant output of the whole swarm depends on local 

interactions between system components and could not be achieved by a single 

object acting alone [1, 2]. 

Simulations of Swarms are used in virtual areas such as animations or 

artificial intelligence. The first computer model of moving animal herd was 

proposed by Reynolds in 1987 and it was called the Boid Algorithm. Reynolds 

modelled the behaviour of moving bird flock or fish shoal by relatively simple 

interactions between single simulated objects called boids [3]. The base of this 

algorithm were three simple rules [4]: 

 separation – each object moves to try to avoid creating local 

concentrations, so it keeps its distance from all of its neighbours; 

 alignment – each object tries to follow its neighbours which allow the 

swarm to move in the same direction at the same speed; 

 cohesion – each object moves towards a local centre of mass. 

A research area of high interest are coverage tasks. Whether by calculating 

the best configuration of highly numerous swarms over the area or planning the 

best path for a smaller group, the goal is to cover the biggest possible fraction of 

the task area. This is used in a wide span of practical applications from military 

monitoring [5] to floor cleaning [6]. Two basic types of coverage are Blanket 

coverage and Sweep coverage [7].  

Blanket Coverage goal is to provide a static arrangement of boids over the 

area. It provides good results even assuming a random distribution of the  

swarm [8] and as it is shown by Wang [9] this method can be significantly 

improved when combined with a suitable algorithm. 

Although being a very accurate method, Blanket Coverage requires  

a swarm count sufficient to cover the whole area with boids in a certain 

relationship. This might be a serious drawback as the bigger the research area the 

more drones are required.  

Sweep Coverage is a method in which elements move over the research area 

and the goal is to pass over the most possible points of it. It can be achieved with 

organized algorithms such as these presented by Miao [10] or by foreplanning the 

path either for a single object[6] or for a whole swarm [11]. 

 



Swarm Behaviour Optimisation Methods Based on an Original Algorithm 55 

 

Sweep Coverage uses fewer boids than Blanket Coverage to perform the task 

but this comes with other requirements. To foreplan the path, data over the whole 

research area needs to be known or it should be possible to share and store such 

information between boids [5]. Either this or the sheer complexity of the 

movement algorithm requires greater computing power or more advanced 

objects. 

In our project, we combined simple boids with a Sweep Coverage method. 

We assumed that boids move randomly and might only stop when they come too 

close to another boid (collision avoidance) or they return if they cross the area 

boundary. The shape of the research area is the only information given over it. 

The purpose of this article is to discuss the method of finding optimal, 

energy-efficient solutions in a swarm algorithm based on an authorial project. 

Assuming that every boid in the swarm consumes a certain amount of energy in 

every unit of time, the goal is to designate a perfect number of objects in the 

group, which allows performing the task in the shortest possible time, consuming 

the least energy. The article also describes the impact of changing test variables 

on the result. 

 

2. PROJECT OBJECTIVES AND ASSUMPTIONS 

 
Swarm Algorithm solutions are used in many research areas such as robotics, 

telecommunications, transport, etc. One such field is military application [12]. 

Swarm of UAVs could search a certain area for mines or other dangerous objects. 

In civil-military applications, a group of drones could search for victims and 

perform search and rescue missions.  

This work is an introduction to the authorial solution of virtual, discrete-time 

Swarm Algorithm used for searching a certain area, providing collision avoidance 

feature that would guarantee no impacts between objects, regardless of their 

number. To specify the task, the following assumptions have been set: 

 the swarm aims to search a certain area in the shortest possible time and 

consuming the least possible energy. According to this, a solution would 

be a compromise between the amount of energy consumed and the time 

needed to finish the task, 

 the way that searching is performed cannot be an orderly way. A single 

boid is a simple object and its movement is of stochastic nature. It moves 

in random directions and it could only control its velocity,  

 simulation is executed in two dimensions and the target area is plain, 

 single object knows the position of each boid and the distance to them. It 

can also react if it moves too close to another object. 

In this article all distances are presented without a unit as at this stage the 

algorithm does not represent any physical system. Also, velocity is given in this 

virtual distance per iteration. 
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3. SWARM ALGORITHM DESCRIPTION 

 
Taking Boids Algorithm as an example, research has been made to find 

inspiration in nature. Studies of different swarming insects showed that the 

behaviour of flies running on the table matches the assumptions posted above. 

Each fly moves independently and their movement seems to be random, yet they 

can avoid collisions. In a situation when two insects would hit each other, one of 

them simply stops letting the other move further [13]. 

The developed algorithm allows simulating a research area (Fig. 3.1.a), 

which is a circular plain of a given radius. The centre of the circle is also an origin 

of the coordinate system. Furthermore, the research area is divided into control 

points with the certain resolution ∆a. The only purpose of these points is to allow 

determining what part of the area has been searched. The movement of a single 

boid is independent of them.  

 

 
 

Fig. 3.1.a) Exemplary research area (Radius R=10) divided into control points with the 

resolution ∆a=0.5, b) Set up of three exemplar boids with their starting coordinates. 

 
Any number of virtual objects can be subsequently be added to the research 

area. They are represented by the points with XY coordinates which specify their 

position on the surface (Fig 3.1.b) to the origin. When boids are set up, the random 

heading angle α1i from 0 to 360 degrees is assigned to each of them.  

A different angle is drawn for each boid separately. 

A simulation is divided into iterations. In each iteration, every object takes 

a step at an assigned angle and with a given velocity. Before making a move the 

angle of each boid is changed by a different, random value Δαij.  
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The number is drawn according to a normal distribution between -90 to 90 

degrees. Resultantly the greater the angle change the less possible it is to appear. 

The probability of changing the angle by 90 degrees is close to zero. The 

movement of the object was shown in Fig. 3.2. 

 
Fig 3.2. Movement of an object 

 
Coordinates of the next position are calculated using the current location and 

the assigned angle updated by a random change. The position is calculated using 

the equations below: 

 
𝑋𝑖+1 =  𝑋𝑖 + 𝑉 ∗ cos (𝛼𝑖 + ∆𝛼𝑖+1) 

𝑌𝑖+1 =  𝑌𝑖 + 𝑉 ∗ sin (𝛼𝑖 + ∆𝛼𝑖+1) 

(1) 

(2) 

- X, Y are the position coordinates of a boid, 

- V is the velocity of a boid, 

- α is the heading angle, 

- ∆α is the change of the heading angle, 

- i, i+1 are the current and next iteration. 

After randomising the angle change and calculation of new coordinates, two 

conditions are being checked before taking a step: 

1) if the object goes outside the research area - in this case, the new angle 

change is drawn. Operation is repeated until the final position fits within 

the area, 
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2) if the boid steps closer than the safe distance to another object – in this 

case, that step is not taken. The boid skips this iteration and it tries to 

move again at the next one. This was shown in Fig. 3.3. 

  

 
 

Fig. 3.3. Interaction between two boids shown in four subsequent steps. The 

rectangular, orange boid skips its movement until the circular, green one passes 

 
In each iteration, an area of a given radius is scanned around every boid. 

Every control point within that distance is marked out. An example of this 

operation is shown in Fig 3.4. where two subsequent steps are shown - blue 

rectangular markers represent unchecked points and red, circular are the scanned 

ones. The biggest green circle shows the area scanned around the boid. 

Simulation controls what part of these points was already checked and stops if it 

exceeds the assumed fraction. The number of iterations needed to complete the 

task is then saved. 

 

 
 

Fig. 3.4. Scanning of surrounding control points  
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4. TESTS 

 
After developing the algorithm series of tests were taken. The first goal was 

to evaluate the number of iterations needed to search the testing area depending 

on the number of boids used for simulation. Furthermore, the number of 

emergency stops, caused by safe distance violation was counted. By knowing the 

values above, one can calculate the energy required to perform the task and 

energy-effectiveness of the swarm. 

To designate energy requirement, an assumption was made that in every 

iteration, every boid in simulation consumes a certain amount of Energy. For this 

consideration, this energy was measured in virtual units that had no physical 

equivalent. The total amount of energy, required to finish the task, was calculated 

by multiplying iterations by the number of boids in the attempt. 

 

 𝐸𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑜𝑖𝑑𝑠 ∙ 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (3) 

 

According to the assumption above, the boid consumes the energy even if it 

is not moving. That case counts towards total energy but it does not contribute to 

goal achievement. This means, that stopping is energy-inefficient. The used total 

energy was compared to the total number of collision avoidance stops, which 

allowed us to see what fraction of moves was prohibited. Energy-effectiveness 

shows what part of the total energy was consumed for actual steps. 

 𝜑𝐸 = 100% −
𝑆𝐸

𝐸𝑡
 (4) 

where SE is the number of safe distance violation stops.  

To evaluate the best compromise between time and energy-effectiveness, the 

additional rate μTE has been introduced. This value equals the number of iterations 

divided by energy-effectiveness. This ratio shows what number of boids is the 

best when the most important is to perform the task in the shortest possible time 

for assumed the lowest energy consumption. The lower is this ratio, the better 

compromise it represents. 

 

 𝜇𝑇𝐸 =
𝐼𝐴𝑉𝐺

𝜑𝐸
 (5) 

where IAVG is the average number of iterations required to perform the task. 

Due to randomness of movement, the results of single tests had a very  

a large dispersion. Therefore, a series of 10 tests were performed for each group 

of boids to draw the average results. Furthermore, for low numerous swarms, an 

examination of 100% of the research area was disproportionally time-consuming, 

so the target percentage of the scanned area was set to 90%. 
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At this stage of the project, bodis were only virtual objects, so they did not 

have a physical form. It means that dimensions or movement constants were not 

known. In this case, for testing an algorithm, all parameters were set up as  

a dependent value to the radius R of the research area. Three variables were 

specifying the behaviour of a single boid and a swarm as a whole: 

- velocity of a single object (distance moved in one iteration): 

  (6) 

- safe distance: 

  
(7) 

- radius of an area scanned during one step: 

  
(8) 

For each of them, there was assigned the separate coefficient ψ, ϑ, and ξ. 

This allowed performing reference tests, which designated an impact of each of 

above variables on the results. The control points interval was set as the constant 

∆a = 0.025R. This parameter only impacts the accuracy, not the results 

themselves. 

The main tests were carried out for ψ, ϑ, ξ = 0.05 and groups consisting of 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 25, 50 and 100 boids. In the remaining tests, one of 

the ψ, ϑ, ξ factors was changed sequentially in a given range to designate the 

influence of the change on results. As these tests were only comparative ones, 

they were carried out for the groups of 1, 5, 10, 50, 100 boids. This allowed seeing 

the character of the change.  

 

5. ANALYSIS OF RESULTS 

 
The results (Tab.5.1 and Fig.5.1) show that the number of iterations needed 

to perform the task, decrease exponentially with an increasing number of boids 

in the test. In the groups of 1 to 10 boids, additional objects in the swarm cause a 

significant reduction of steps required to finish the task.  

Further increase in the size of the group still causes a decrease in the length 

of the tests but differences are lesser. This is a result of increasing number of safe 

distance violation situations. The more objects in the research area, the greater 

chance they would cause a collision, and in this case they do not move.  
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Table. 5.1 Results 
Number of boids in 

the test
1 2 3 4 5 6 7 8 9 10 15 25 50 100

Avarage number of 

iterations Iavg
804.6 402.1 292.6 203.8 187.5 138.4 117.6 113.4 97.8 84.4 58.5 36.2 25.2 19.3

Standard Deviation 

σ
175 73.1 96.2 31.7 71.3 25.5 29.2 24.7 19.4 18.8 9.4 5.5 3.4 3.5

Avarage number of 

Collision Avoidance 

Stops SE

0 5.1 5.1 11.2 13.1 18.4 17.5 31.7 40.1 44.1 78.7 142.4 394.2 1329.1

Energy-Effectiveness 

φE
100% 99% 99% 99% 99% 98% 98% 97% 95% 95% 91% 84% 69% 31%

Time to Energy-

Effectiveness Ratio 

μTE

804.6 404.6 294.2 206.5 190.1 141.5 120.1 117.5 102.5 89.1 64.2 42.9 36.6 62.2

  
 

  
 

Fig.5.1. Dependence of Average number of iterations (a) and Average number  

of collision avoidance stops (b) on a number of boids in the group 
 

Due to this, the energy-effectiveness continuously decreases with increase 

in size of the group as shown in Fig. 5.2.a. For the biggest group, even though the 

task was performed relatively quickly, the effectiveness was significantly 

smaller. For a single boid group, the effectiveness is always 100% as there is no 

other object to collide but the average time of the test is incomparably higher. 

The shortest time, combined with the energy-effectiveness of over 90%, shows 

for a group of 15 boids. As shown in Fig.5.2.b, the best μTE ratio is for a swarm 

of 50 boids and for rising beyond that point. This concludes that there can be 

found a minimum of this rate. Depending on what requirements are set for the 

task, either for the minimal energy-effectiveness or the most viable combination 

of time and energy consumption, there can be found the best number of boids to 

perform the task. 
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Fig.5.2. Dependence of Energy-effectiveness (a) and Time to Energy-effectiveness 

Ratio (b) on the number of boids in the group. 

 

Furthermore, as shown in Table 5.1, the largest standard deviation appears 

for the sample with one boid and it is decreasing with the increasing size of the 

group. The reason for this is that for smaller groups, and especially for single boid 

tests, the time to complete the task depends on a random distribution of the path. 

The fewer boids in the group, the better chance that the path follows an already 

searched area. In this case, the number of steps increases when the fraction of 

scanned area stays the same. For greater groups probability that any of the objects 

moves through the not scanned area is much greater. 

After the main tests had been carried out, the secondary trials were 

performed to evaluate an impact on the results caused by changing the following 

variables: the velocity V, the safe distance dsafe, and the radius of scanned area 

rscan. Series of tests were carried out in which subsequently one of the coefficients 

ψ, ϑ, ξ was changed while others were constant. For every parameter, there were 

performed two additional series of tests to see the influence of lowering and 

increasing this variable.  
At this stage, the algorithm did not check the path between step points of 

boids. There could appear situations in which the segment between these points 

crossed through the safe zone of another object. Due to this, a velocity of  

a single object could not be more than twice a Safe Distance, as this would allow 

one object to move directly over the other, straight through the center of the safe 

zone. 

Firstly, varying of a Safe Distance has been checked for the following values 

of the coefficient ψ = [0.1; 0.05; 0.033]. The results were shown in Fig.5.3. and 

Table 5.2. The bigger safe distance, the more iterations the trials lasted and the 

differences are greater for more numerous groups. It also causes more Safe 

Distance Violations’ Stops and what follows a drop of energy-effectiveness 

which for groups of 50 and 100 boids is below zero.  
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This means that in these cases boids mostly did not move as bigger safe 

zones made it almost impossible to take a safe step. 

 

  
 

Fig.5.3. Influence of varying a safe distance on the results 
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Table 5.2. Influence of varying ψ on the results 

 
The second verification was carried out for a velocity and varying the 

coefficient y as follows ϑ = [0.025; 0.05; 0.067]. As it is shown in Fig.5.4 and 

Table 5.3, the higher velocity, the better performance and inversely, lower 

velocity causes worse task conduction. The changes for smaller groups are more 

significant than in the Safe Distance case and contrary the changes are lesser for 

more numerous groups.  

Table 5.3. Influence of varying ϑ on the results 
 

 
 

The third checked variable was the radius of the area scanned during every 

step. Tests were performed for the factor ξ = [0.05; 0.1; 0.2]. The results can be 

seen in Table 5.4 and in Fig.5.5. As it is shown in the results, the time to finish  

a trial is inversely proportional to the radius of scanning. 

ψ 1 5 10 25 50 100

0.1 785.6 224.6 117.8 60 57.4 73.2

0.05 805 188 84 36 25 19

0.033 828 171 84 38 22 17

ψ 1 5 10 25 50 100

0.1 0 275 375.1 1044.4 4366 20320.7

0.05 0 13 44 142 394 1329

0.033 0 5 8 42 97 431

ψ 1 5 10 25 50 100

0.1 100% 75.5% 68.2% 30.4% -52.1% -177.6%

0.05 100% 98.6% 94.8% 84.2% 68.7% 31.0%

0.033 100% 99.5% 99.0% 95.7% 91.1% 75.0%

Collision avoidance stops

Energy-Effectiveness

Safe Distance dsafe = ψ · R
Average number of iterations

 

 

ϑ 1 5 10 25 50 100

0.067 557.1 130.1 57.4 28.5 17 13.7

0.05 805 188 84 36 25 19

0.025 2289 500 230 99 66 28

ϑ 1 5 10 25 50 100

0.067 0 17.1 15.9 78.2 178.5 879

0.05 0 13 44 142 394 1329

0.025 0 286 230 688 1395 5012

ψ 1 5 10 25 50 100

0.067 100% 97.4% 97.2% 89.0% 79.0% 35.8%

0.05 100% 98.6% 94.8% 84.2% 68.7% 31.0%

0.025 100% 88.6% 90.0% 72.1% 57.6% 13.4%

Average number of iterations

Velocity V = ϑ  · R

Collision avoidance stops

Energy-Effectiveness
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Fig.5.4. Influence of varying a single boid’s velocity on the results 

 
Table 5.4. Influence of varying ξ on the results 

 

 

 

ξ 1 5 10 25 50 100

0.05 1700.8 342.3 160.8 71.6 40 30.1

0.1 805 53. 84 36 25 19

0.2 514 101 46 23 16 11

ξ 1 5 10 25 50 100

0.05 0 26.9 92 263.8 522.8 1978.7

0.1 0 13 44 142 394 1329

0.2 0 13 25 114 286 753

ξ 1 5 10 25 50 100

0.05 100% 98.4% 94.3% 85.3% 73.9% 34.3%

0.1 100% 98.6% 94.8% 84.2% 68.7% 31.0%

0.2 100% 97.5% 94.7% 80.2% 63.8% 30.9%

Radius of area scanned rscan = ξ · R

Collision avoidance stops

Energy-Effectiveness

Average number of iterations
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Fig.5.5. Influence of varying a size of an area scanned in every step 

 
The bigger area searched with every step, the quicker task is done. For  

a constant Velocity and a Safe Distance, the number of Collision Avoidance 

Stops is directly proportional to time, regardless of the radius rscan. Due to this, 

energy-effectiveness is almost the same in every case, which means that the size 

of the area, scanned with every step, influences the total time but not the energy-

effectiveness of the swarm. 
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6. CONCLUSIONS 

 
The presented algorithm allows performing the Coverage Task. The task is 

performed correctly, but the way it is done is not optimised. In case of the possible 

collision, boids stop what momentarily prevents them from continuing the task. 

The more collisions occur, the less efficient the swarm is. Furthermore, in this 

version, the algorithm could not be used on any real object, as it does not take 

into account any dynamics. 

Compared to the Blanket method, the provided algorithm requires a similar 

level of simplicity of a single drone but it does not require that high amount of 

objects. The task can be performed even by a single boid regardless of the 

research area’s size. 

The presented algorithm is more related to the Sweep Method. In both 

solutions, drones are in constant movement until the task is done but most Sweep 

Coverage solutions require the movement to be somehow determined.  

This implicates that the boids must be more advanced objects. In this project, 

we assumed stochastic movement of the boids which does not require high 

computing power and the object might be as simple as possible. 

On the other hand, the random movement of boids comes with some flaws. 

There can be seen a large results dispersion, especially for less numerous groups. 

In a real-life solution using this algorithm, there should be an additional system 

that would control the area coverage. Without additional control, one might never 

be certain what part of the area was truly covered, it can be only assumed by the 

results provided in simulations.  

Furthermore, finishing the task takes more time if it is performed by 

randomly moving objects. The same amount of boids could perform the task 

much faster if they moved along the precalculated, optimal path. 

According to the presented results, the more boids there are, the faster they 

finalise the task, but their effectiveness decreases. Furthermore, the change in 

time, needed to complete the task, decreases with an increase of boids in the 

swarm. From some amount of boids, a further increase in quantity causes 

disproportionate changes in iterations which means, that beyond that point the 

effectiveness of subsequent boids is reduced. The results show that there can be 

designated an optimal number of objects in the group, that would perform the 

task in the best time and the best effectiveness. It can be useful while developing 

a real, physical swarm where a smaller amount of devices means smaller costs. 

Calculating the energy effectiveness allowed us to designate additional 

information about optimisation of the number of boids in the swarm. The results 

show, that there can be evaluated the best solutions for certain assumptions. There 

can be found what number of boids would perform the task in the shortest 

possible time with assumed energy-effectiveness.  
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There can also be found a group with the best time to an energy-effectiveness 

index that would perform the task with the best combination of the shortest time 

and consumed energy. 

Additional tests, with changing the variables, allowed us to determine their 

impact on the result. They showed that the Velocity and Safe Distances are 

combined but a change in the Velocity is more significant for smaller swarms 

when a change in the safe distance has a greater influence on more numerous 

groups. This concludes that for small groups better are faster boids and for more 

numerous swarms more useful would be boids that can move in closer proximity. 

Varying the radius of the area, scanned with every step impacts the total 

performance but has almost no influence on the energy-effectiveness of the 

swarm. 

The presented solution is the first version of this algorithm. As mentioned 

earlier, at this stage it might not be used to simulate real objects as it does not 

consider any physical parameters. This indicates furthers steps for the project. In 

subsequent version of the algorithm, there will be included variables such as mass 

and acceleration.  

Also, as this algorithm is intended to simulate UAVs, there will be added the 

height of flight and hence energy consumption should be divided into the 

Potential Energy and Kinetic Energy. 
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Streszczenie. W artykule przedstawiono metody znalezienia optymalnej wielkości roju 

dla danego zadania. Głównymi ocenianymi czynnikami są czas i zużycie energii. 

Autorskie rozwiązanie algorytmiczne pozwoliło na wyznaczenie różnych przypadków  

i zbadanie wpływu różnych parametrów pojedynczego boida na zachowanie całego roju. 

Obliczenie efektywności energetycznej pozwoliło na wyznaczenie dodatkowych 

informacji o optymalizacji liczby boidów w roju. Wyniki pokazują, że można ocenić 

najlepsze rozwiązania dla określonych założeń. Można znaleźć, jaka liczba boidów 

wykonałaby zadanie w jak najkrótszym czasie przy założonej energooszczędności. 

Można również znaleźć grupę z najlepszym czasem do uzyskania wskaźnika 

efektywności energetycznej, która wykonałaby zadanie przy najlepszej kombinacji 

najkrótszego czasu i zużytej energii. Dodatkowe testy ze zmieniającymi się zmiennymi 

pozwoliły określić ich wpływ na wynik. Wykazano, że prędkość i bezpieczna odległość 

są ze sobą połączone, ale zmiana prędkości jest bardziej znacząca dla mniejszych rojów, 

gdy zmiana bezpiecznej odległości ma większy wpływ na liczniejsze grupy. Wynika  

z tego, że dla małych grup lepsze są szybsze boidy, a dla liczniejszych rojów bardziej 

przydatne byłyby boidy, które mogą poruszać się bliżej. Zmienianie promienia obszaru 

skanowanego na każdym kroku wpływa na ogólną wydajność, ale prawie nie ma wpływu 

na efektywność energetyczną roju. 
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